
How to Reason by HeaRT in a Semantic Knowledge-Based Wiki

Weronika T. Adrian, Szymon Bobek, Grzegorz J. Nalepa, Krzysztof Kaczor, Krzysztof Kluza
AGH University of Science and Technology

al. A. Mickiewicza 30, 30-059
Krakow, Poland

{wta,sbobek,gjn,kk,kluza}@agh.edu.pl

Abstract—Semantic wikis constitute an increasingly popular
class of systems for collaborative knowledge engineering. We
developed Loki, a semantic wiki that uses a logic-based knowl-
edge representation. It is compatible with semantic annotations
mechanism as well as Semantic Web languages. We integrated
the system with a rule engine called HeaRT that supports
inference with production rules. Several modes for modularized
rule bases, suitable for the distributed rule bases present in a
wiki, are considered. Embedding the rule engine enables strong
reasoning and allows to run production rules over semantic
knowledge bases. In the paper, we demonstrate the system
concepts and functionality using an illustrative example.

Keywords-Knowledge-Based Systems, Knowledge Represen-
tation, Reasoning, Semantic Wikis, Knowledge Management

I. INTRODUCTION

The Semantic Web initiative promises new generation
of the Web in which machines cooperates with people in
solving complex searching, reasoning and planning tasks.
Knowledge Representation (KR) methods developed for the
Semantic Web stem from research in the field of Artificial
Intelligence (AI), but they concentrate more on useful and
expressive data representation rather than its intelligent
processing. One of the most popular implementations of the
Semantic Web concepts are semantic wikis. Over the last
few years they have gained a steadily increasing popularity
in the fields of knowledge acquisition, management and
collaborative knowledge engineering.

Semantic wikis allow for enriching the content with
semantic information. The most widely used methods for
knowledge representation in semantic wikis are seman-
tic annotations popularized by the Semantic MediaWiki
(SMW) [?] system and its extensions. They allow to assign
categories and attributes to wiki pages and define semantic
relations among them; they facilitate navigation as well as
enable posing semantic queries. The semantically annotated
knowledge can be aggregated and queried, and simple
classification tasks may be performed. This is useful in
encyclopedia-like systems, where users search for data by
querying the knowledge included in semantic annotations.

In various practical applications, more flexible and dy-
namic KR methods are desired. Enriching the representa-
tion with rules and providing an inference engine enable
reasoning beyond classification and querying. Based on the

q
u

er
y
in

g
:

S
P

A
R

Q
L

,
P

ro
lo

g

Prolog

wikitext + annotations

Loki Engine

Loki Knowledge Base

SMW Rules Ontologies

Engine

Rule

Reasoner

DL

Figure 1. Knowledge representation and processing in Loki-with-HeaRT

information stored in semantic annotations, new facts can be
deduced, or desired actions may be performed. Knowledge
stored in the system may be considered as a fact base for
a rule-based system. In such a system, various inference
modes can be considered, including forward and backward
chaining inference.

We have integrated a rule engine HeaRT [?] with a se-
mantic wiki Loki [?] into a hybrid system Loki-with-HeaRT.
In this paper, we demonstrate how this combination can
be used to develop practical intelligent systems based on
semantic annotations and rule-based reasoning. Loki-with-
HeaRT combines the semantic wiki flexibility in collabo-
rative knowledge engineering with the power of rule-based
representation. Knowledge representation and processing in
the system is conceptually shown in Fig. 1. The system most
important features can be summarized as follows: 1) It uses a
concise logical-based knowledge representation for semantic
annotations and rules. 2) It provides reasoning capabilities
using powerful Prolog resolution algorithm. 3) By integrat-
ing the HeaRT engine, it provides several reasoning modes
operating on modularized rule bases. 4) It facilitates knowl-
edge acquisition by keeping compatibility with widely-used
semantic annotations. 5) It supports knowledge sharing by
exporting the content to RDF and OWL.

We demonstrate the system functionality on a use case
of a movie recommendation system. Its main goal is store
information about movies and suggest movies to users, based
on the information they provide (such as age, favorite genres,
authors etc.) as well as the history of seen movies.

The rest of the paper is organized as follows: in Section II
we present the knowledge acquisition and querying with se-
mantic annotations in Loki. Rule format and reasoning with
the HeaRT engine is outlined in Section III. The underlying

knowledge representation and processing of the combined
system is then explained in Section IV. The implementation
of the system is briefly described in Section V. Summary
and future work conclude the paper in Section VI.

II. BASIC SEMANTIC ANNOTATIONS IN LOKI

The principle objective of Loki is to use a unified
logical representation while providing users with diverse
knowledge acquisition methods. On one hand, Loki sup-
ports semantic annotations as used in SMW, because
they are commonly used and intuitive even for untrained
users. For example, the information that a movie A
has been directed by a person B can be expressed as:
[[director::B]] within the wiki page about A. Cat-
egory assignment is done with the [[category:Name
of the category]] annotation, and an attribute value,
e.g. a release date of a movie, can be expressed with :=
operator (e.g. [[date:=2011]]). On the other hand,
users can define rules. More experienced users or knowledge
engineers can develop a complete rule base within the
system (for details see Section III). An example of the wiki
page representing a movie and recommendations based on
classification is shown in Fig. 2. The source wikitext for this

Figure 2. Semantic annotations in Loki

page is as follows:

====== The Sunset Limited ======
[[category:movie|]]
{{ :movie:the-sunset-limited.jpg?w200|}}

| **Release date**: [[date:=2011]] |
Country: [[country:=USA]] |

| **Language**: [[language:=english]] |
Genre: [[genre:=drama]] |

Screenplay:
[[screenplay::person:cormac_mc_carthy

|Cormac McCarthy]]
Director:

[[director::person:tommy_lee_jones
|Tommy Lee Jones]]

Starring:
* [[starring::person:tommy_lee_jones

|Tommy Lee Jones]] - White
* [[starring::person:samuel_l_jackson

|Samuel L. Jackson]] - Black

====== Recommendation: ======
Movies by this director:
{{#ask: [[category:movie]]
[[director::person:tommy_lee_jones]]}}

Movies in this genre:
{{#ask: [[category:movie]] [[genre:=drama]]}}

Adding semantics based on a notion of categories, at-
tributes and relations is straightforward. This facilitates col-
laborative knowledge engineering, because the wiki markup
is flexible and easy to learn. In the presented use case, users
can add new movies, describe them with attributes and con-
nect with relations, extend the movie and people descriptions
collaboratively developing the system knowledge base.

Semantic annotations allow for querying the wiki with
use of a simple ask syntax as in SMW. Within a query one
can use logical operators, wildcards, subqueries and property
chains. Moreover, the sub-class and sub-properties relations
are analyzed and the simple reasoning based on classification
is performed. The output of the queries may be formatted
as a list, a table, a CSV file etc. (see the documentation1).

Loki supports Semantic Web standards for querying and
exporting the system data. SPARQL syntax is supported with
an assumption that only the wiki system may be queried, not
any external source. The semantic content of the wiki may
be exported to an RDF/XML file (see the Export button in
Fig. 2). Wiki pages are exported as instances, relations as
OWL Object Properties, attributes as Datatype Properties.
Subcategories are interpreted as OWL subclasses.

III. REASONING WITH HEART

HeKatE RunTime (HeaRT) [?] is a lightweight em-
beddable rule inference engine developed in the HeKatE
project [?] 2. It uses an expressive visual rule representation
language called Extended Tabular Trees (XTT2) [?] which is
based on a network of connected decision tables. An exem-
plary network is given in Fig. 3. The XTT2 representation
allows HeaRT to support two inference modes: Data Driven
inference (DDI) and Goal Driven inference (GDI) which are
forward and backward chaining algorithms.

Visual representation of the rule base is human-readable
but difficult to parse and process. To this end, the HMR
rule language is used 3 It is a simple and readable text
representation suitable for automated processing. The textual
representation is automatically generated from the visual
one, by a dedicated design tools [?].

1See http://loki.ia.agh.edu.pl.
2See http://hekate.ia.agh.edu.pl.
3See http://ai.ia.agh.edu.pl/wiki/hekate:hmr.

age genre filter

horrors

comedies

thrillers

science-ficton

Figure 3. Schema of the XTT2 visual representation of the system

Let us now demonstrate rules used in the recommendation
system outlined in previous section. Rules written in HMR
would be added and used to recommend a movie set for a
user of a given age and some film genre preferences. We
use separate wiki namespaces for each user of the system
and another namespace for movies. The schema of a visual
representation of the rule base is presented in Fig. 3.

Let us analyze the DDI run over this knowledge base.
In the first step, the system decides for which subsets of
movies a user is allowed based on his age. For instance,
users younger than 18 are not allowed to watch horrors and
thrillers nor other movies that age limit is higher than 18.
Then, based on the age filter, the system search for movies
that best fit user preferences specified in his profile. In the
end, the system responds with a list of recommended movies.

HMR language is embedded on wiki pages within
<pl></pl> tags. An exemplary rule written in HMR is
shown below. The rule should be read as follows: If the
age of the user is less then 18 and he marked horrors and
thrillers as his preferred genres, then set age filter to none.

xrule filter/1:
[age lt 18,
movie_types sim [horror, thriller]]
==> [age_filter set [none]].

To initialize attribute values (user age and preferences),
the xstat element from HMR language is used (see Fig. 4).

Figure 4. Movie recommendations on a user profile page
In the presented case rules are located on separate pages.

Such a modularization of knowledge base is especially
useful when there may be several different sets of rules
that have common parts. It is easy to control system goals

by controlling modules (namespaces) with rules. To merge
all information, a scope has to be given when a goal for
the inference is specified. In the discussed system, the
construction scope="[user|movies]" is used.

It is also possible to browse through the database of
movies and get information whether selected movie is rec-
ommended for the user or not. This is a different reasoning
task, because the inference works backward, not forward.
What is important, this functionality can be achieved without
modifying the rule base. Technically speaking, only one line
of the wiki markup must be changed, e.g.:

<pl scope="[user|movies]"
goal="gox(user,[comedy_rules],gdi),
print_results."> </pl>

IV. KNOWLEDGE REPRESENTATION AND PROCESSING

The knowledge acquisition layer described in previous
sections covers the semantic annotations as used in Semantic
MediaWiki (see Sect. II) as well as rules and state defini-
tions in HMR language (see Sect. III). All the knowledge,
represented in various ways, upon saving the wiki page
is translated to the underlying logical representation. This
representation is based on a Prolog subset of First Order
Logic which allows to formulate and process Horn clauses.

Semantic annotations are translated into facts as follows:

[[category:movie]]
wiki_category(’movie’,’the_sunset_limited’).

[[director::person:tommy_lee_jones
wiki_relation(’the_sunset_limited’,
’director’,’tommy_lee_jones’).

[[date:=2011]]
wiki_attribute(’the_sunset_limited’,
’date’,’2011’).

Semantic queries are mapped into Prolog goals as:

{{#ask: [[category:movie]]
[[director::person:tommy_lee_jones]]}}

wiki_category(’movie’,Page),
wiki_relation(Page,’director’,
’tommy_lee_jones’).

To answer the semantic queries, the core Loki engine
realizes the goals against the knowledge base, using the
Prolog resolution algorithm. For more advance inference,
the HeaRT engine is used. It can directly operate on facts
stored in the KB resulted from the semantic annotations.

One can also embed Prolog code (facts and rules) into
the wiki, which may be a convenient way of knowledge
engineering for a group of qualified users. Nevertheless, it
is not necessary to know the Prolog syntax – using simple
annotations and HMR rule language serves the goal of Loki
to provide a flexible and user-friendly environment.

V. SYSTEM DESIGN AND IMPLEMENTATION

Loki has been designed as an extension to a popular
wiki engine Dokuwiki 4. The Loki functionality has been
added with used of Dokuwiki plugins mechanism. The first
prototype implementation called PlWiki (Prolog-based Wiki)
has been described in [?]. Knowledge engineering with this
prototype has been discussed in [?]. For details about the
system architecture see [?].

Technical aspects of the integration of the core Loki en-
gine with HeaRT has been described in [?]. The architecture
of Loki-with-HeaRT is divided into two modules: the one
responsible for rendering wiki pages and extracting the HMR
code, and the other – for performing inference based on the
HMR model passed to it by the Loki engine.

The process of rendering a wiki page in Loki with HeaRT
is as follows: 1) Wiki engine parses the wiki page and ex-
tracts semantic information (categories, relations, attributes,
HMR code) and reasoning queries or goals for HeaRT. 2)
If HMR code for HeaRT is present, then depending on a
scope defined in the goal, Loki merges the HMR code from
wiki pages in a given scope and passes it to HeaRT. 3)
HeaRT performs the reasoning process and returns results
to the Loki engine. 4) Loki renders complete wiki page the
answer to a given query or goal.

VI. SUMMARY

Loki is a knowledge-based semantic wiki that combines
flexible knowledge representation with strong reasoning
mechanisms. On one hand, it is compatible with popular
semantic annotations. On the other, it is integrated with a
rule engine able to operate in various modes over modular-
ized rule bases. The unified underlying representation en-
ables processing knowledge acquired in different ways. The
architecture of the system is modularized and expandable.

The current state of semantic wikis development can
be traced on the semanticweb.org portal 5. Most of
semantic wiki systems that introduce rules to their syntax, do
not take full advantage of this representation. For instance,
rules available in AceWiki [?] are translated to OWL,
and during reasoning are processed as First-Order calculus
expressions loosing strength of rule representation. To the
best of our knowledge, no structuralization of knowledge
base is provided by any of the semantic wiki systems. In
KnowWE [?], there is a possibility of expressing knowledge
with decision tress, but during translation from decision trees
to rules, the dependencies between them are lost, which
slows down the inference process.

For future work, we plan to implement an import facility,
so that external ontologies can be used in the system. More-
over, integration with HeaRT will move from embedding the

4See http://dokuwiki.org.
5See http://semanticweb.org/wiki/Semantic_wiki_projects.

engine into communication over TCP/IP network. Using this
architecture, more information will be exchanged between
Loki and HeaRT, e.g. the logged in user’s identifier, the
currently viewed wiki page, the date and possibly more state-
related information. This will allow for even more flexible
and dynamic operations based on knowledge in the system.

ACKNOWLEDGMENT

The paper is supported by the AGH UST Grants.

REFERENCES

